
Efficient Exploration of Environments Using Stochastic Local Search

Ramoni O. Lasisi
Department of Computer and Information Sciences, Virginia Military Institute, Lexington, 24450 VA, U.S.A.

LasisiRO@vmi.edu

Keywords: Agents, Teams, Team Formation, Stochastic Local Search, Simulation, Experiments.

Abstract: This research provides a preliminary investigation of the use of Stochastic Local Search (SLS) technique
to explore complex environments where agents’ knowledge and the time to explore such environments are
limited. We model the problem as that of an instance of a search problem and develop an SLS technique that
enables efficient exploration of such relatively difficult environments by teams of agents. Preliminary results
from our experiments using teams of various sizes that implement the model show the effectiveness of the
proposed technique. In most cases of the problem instances, teams of agents were able to complete exploration
of more than 70% of the environments. While in the best cases, they were able to complete explorations of
more than 80% of the environments within short period of time.

1 INTRODUCTION

Autonomous agents in complex environments may
need to work together as teams to achieve desired
goals. This is an important feature of most multiagent
environments where individual agents lack all the re-
quired capabilities, skills, and knowledge to com-
plete tasks alone. These environments can model real-
world problem domains where agents’ knowledge and
available time to complete tasks in such domains are
limited. Agents may thus resort to team formation
to complete tasks. Team formation or coalition for-
mation are simple models of short-term cooperation
(Griffiths and Luck, 2003; Chalkiadakis et al., 2011)
where agents complete specific tasks.

Here is a straightforward motivation for the prob-
lem we study. Consider a rescue operation in an air-
craft crash site where search for survivors may be
guaranteed in the first few hours of the crash. Agents
neither know where survivors are located nor have
enough time to explore the environment for vic-
tims. They need, preferably as teams, to devise meth-
ods that systematically explore the environment to
achieve desired goal. It is not difficult to see that this
example and many other similar real-world domains
can be modeled as that of search problems. This ob-
viously raises the following important question: How
can teams of agents efficiently explore relatively diffi-
cult environments using appropriate search strategies
that achieve acceptable outcomes?

This research provides a preliminary investigation

of the use of Stochastic Local Search (SLS) tech-
nique to explore complex environments where agents’
knowledge and the time to explore such environments
are limited. We model the problem as that of an in-
stance of a search problem and develop SLS tech-
niques that enable efficient exploration of such rela-
tively difficult environments by teams of agents.

SLS algorithms have made significant success in
solving many hard problems (Hoos and Stutzle, 2005)
which involve search of well-defined solutions spaces
(or states). A model of SLS algorithms is defined to
include a neighborhood and an evaluation function -
both of which are specific to different problems. The
goal of an agent using SLS algorithm is to seek a state
s from the set of possible states S in the problem do-
main that optimizes some measures (Neller, 2005). A
neighborhood, N(s), is defined for each state s. N(s)
is the set of all possible successor states that are lo-
cal to s i.e., the set of all possible states that an agent
transits into from the current state s. The evaluation
function is defined to exploit the current knowledge
of the neighborhood and then stochastically selects a
successor state s′ ∈N(s).

This simple method of choosing the successor
state by the evaluation function may further be guided
towards solutions that optimize goals measures using
heuristics. The neighborhood and evaluation function
capture two interesting features of SLS algorithms
that we exploit in this work. We implement an SLS
technique that allows teams of agents to efficiently ex-
plore three two-dimensional grid environments.

244
Lasisi, R.
Efficient Exploration of Environments Using Stochastic Local Search.
In Proceedings of the 9th International Conference on Agents and Artificial Intelligence (ICAART 2017) - Volume 1, pages 244-251
ISBN: 978-989-758-219-6
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



2 RELATED WORK

We discuss SLS in general and provide a description
of the three two-dimensional grid environments that
we use to evaluate our proposed SLS technique for
efficient exploration by teams of agents. Further, we
provide some background on team formation and its
application in search problems.

SLS algorithms have been successfully applied
to many hard problems including Traveling Sales-
man Problem, Graph Coloring Problem, Satisfiabil-
ity Problem in Propositional Logic, and more (Hoos
and Stutzle, 2000; Hoos and Stutzle, 2005). Com-
mon SLS algorithms include simulated annealing,
hill climbing, and evolutionary inspired genetic al-
gorithms (Russell and Norvig, 2010). As highlighted
in the previous section, the definitions of a neighbor-
hood and its associated evaluation function in SLS
algorithms are specific to the problem domain. The
real novelty in the employment of SLS techniques to
construct an algorithm comes from how elegant the
neighborhood and the evaluation function are defined
for the problem domain such that the algorithm is
well-guided towards feasible solutions within a short
period of time.

Soule and Heckendorn (Soule and Heckendorn,
2009) describe three environments on which their
work is based. We reproduce these environments and
there descriptions since we have used them to eval-
uate our proposed SLS technique. Each of the three
environments is composed of two-dimensional grids
of 45×45 containing some percentages of interesting
cells that are distributed in some ways within the en-
vironments. A cell is said to be interesting if it con-
tains some sub-goals or information that leads to the
desired goal of a team. Using the example of the pre-
vious section, a cell in this case will be interesting if
it contains, say, a survivor or victim from the crash.

The environments are named according to how
the number of interesting cells are distributed in the
grids. They are referred to as random, clumped, and
linear. Figures 1, 2, and 3 depict sample schematic
views of random, clumped, and linear environments
for a 20× 20 two-dimensional grids. The interesting
cells in each environments are shown shaded. In a
random environment, each cell has a uniform 20%
chance of being interesting. For clumped environ-
ment, exactly 20% of the cells are interesting and
are stochastically clumped in the four corners of the
grids. Finally, in the linear environment, exactly 10%
of the cells are interesting and they are distributed ran-
domly along eleven rows in the environment.

The same eleven rows are always used, but the
exact placement of interesting cells within the rows

Figure 1: A schematic view of a random environment for a
20×20 two-dimensional grid.

Figure 2: A schematic view of a clumped environment for
a 20×20 two-dimensional grid.

Figure 3: A schematic view of a linear environment for a
20×20 two-dimensional grid.

Efficient Exploration of Environments Using Stochastic Local Search

245



is random. These environments model applications
in the real-world. An environment might represent a
minefield with the interesting cells representing po-
sitions of potential mines or geological formations
(Soule and Heckendorn, 2009). Teams evolved to
explore environments may also represent automated
planetary surveying team (Thomason et al., 2008).

Soule and Heckendorn use evolutionary algo-
rithms to implement a multiagent team training algo-
rithm called Orthogonal Evolution of Teams (OET) to
evolve teams of agents. The three environments above
alternatively serve as both the training and testing en-
vironments to evaluate the performance of their OET
algorithm. They consider evolution of heterogeneous
multiagent teams (i.e., teams of agents with special-
ized roles). There are two types of specialized agents
in their work: scouts and investigators. The scouts
and investigators are respectively responsible for find-
ing as much as possible interesting cells and marking
them as investigated. Unlike our approach however,
where all agents are limited to moves of length one in
a single time step in the environments, the scouts are
allowed a move of length two in a single time step.

Results from our work using SLS technique to ex-
plore different environments compare with those of
Soule and Heckendorn’s with performances within
similar ranges. However, it is not yet clear how fair
that comparison can be justified since their work em-
ploys evolutionary algorithm which come with exten-
sive time requirements of evolutionary learning and
huge time and costs of training for agents before they
are deployed to actual testing environments.

Team formation is a form of cooperation that has
been used in many areas of multiagent systems. Ex-
amples can be found in business (e.g., organizations
form teams to make more sales and hence more prof-
its), in academia (e.g., professors form teams to pub-
lish articles), in search and rescue (e.g., robotic agents
form teams in large natural disaster environments to
save life and properties), and in voting (e.g., voters
form teams to win elections). We cooperate with oth-
ers to solve problems that may be difficult to accom-
plish alone. This may be due to a number of factors,
including how critical a task is, distribution of indi-
vidual skills/resources, or need for physical presence
in multiple work places at the same time.

An interesting number of works have employed
various forms of team formation and search strate-
gies in solving problems related to search or ex-
ploration. See for example the works of (Batalin
and Sukhatme, 2003; Macedo and Cardoso, 2004;
Thomason et al., 2008; Hollinger et al., 2009; Ray
et al., 2011; Rochlin et al., 2014; Okimoto et al.,
2016). It is important to note that none of these re-

search employed the SLS technique that we propose
in this work.

3 PROBLEM FORMALIZATION

Given any of the three environments described in the
previous section and a number of autonomous agents,
each with limited knowledge of the environments,
the problem we attempt to solve is to form teams
of agents that efficiently explore as much interesting
cells as possible in the grids within a limited amount
of time. Our attempt in solving this problem uses a
model that employs techniques from SLS algorithms.

3.1 The Neighborhood

We present our framework of the neighborhood on
any of the three environments. Denote by ci j a cell
in any grid of an environment where i, j ∈Z+ are the
Cartesian coordinates of the cell ci j.
Definition 1. A state s with a reference cell, ci j, in
an environment consists of the reference cell ci j, and
all immediate cells c′i′ j′ from ci j such that ∣i− i′∣ = 1 or
∣ j− j′∣ = 1.

An example of a state labeled s is shown in Figure
4 with a reference cell ci j. The immediate cells from
ci j are shaded in gray. The set of all possible states
S in the problem domain constitutes the search space
we seek for feasible solutions (i.e., finding as much as
possible interesting cells).

Figure 4: A view of a neighborhood N(s) for a state s.
N(s) = {s1,s2,s3,s4}.

Definition 2. The neighborhood N(s) of a state s
consists of all states s′ that share boundary with
s. Hence, any neighborhood consists of only four
neighboring states.

Figure 4 shows an example of a neighborhood
N(s) for a state s. States s1,s2,s3, and s4 (shaded in

ICAART 2017 - 9th International Conference on Agents and Artificial Intelligence

246



black) all share boundary with state s. Thus, N(s) =
{s1,s2,s3,s4}.

3.2 Evaluation Function

Agents in our model use an evaluation function to
guide selection of successor states to transit into. Fig-
ure 5 gives the pseudocode of the algorithm for our
evaluation function.

SuccessorState(a,s)
Input: Agent a and the current state s of a
Output: A successor state s′ ∈N(s)

SuccStates �∅
foreach state s′ ∈N(s) do

if s′ has not been visited then
if there exists no other agent a′ in s′ then

SuccStates � SuccStates∪{s′}
if SuccStates is empty then

randomly select an s′ from N(s)
else randomly select an s′ from SuccStates

return s′

Figure 5: Algorithm SuccessorState(a,s) to implement the
evaluation function for exploration of environment using
Stochastic Local Search.

Algorithm SuccessorState(a,s) accepts two in-
puts - an agent a, and the current state s, of the
agent. It outputs a successor state s′ if one exists,
otherwise it stochastically selects any state in N(s)
as the successor. In a single time step of exploration
of an environment by all agents in our system, each
agent calls SuccessorState(a,s) algorithm once to de-
termine the next state to transit into. It is not diffi-
cult to see that the total running time of a single time
step of the exploration of an environment is linear in
the number of agents, since SuccessorState(a,s) al-
gorithm only examines a constant number (i.e., the
four) neighboring states to s.

We also show that an agent does not remain
infinitely in a particular state in situations where
SuccStates is empty, at which time the evalua-
tion function stochastically selects any state from
N(s). We refer to situation where SuccStates is empty
as a situation of “no progress”. The “no progress” sit-
uation is eliminated in the next attempt by the evalu-
ation function to find a successor state and does not
occur often as described below.

Suppose an agent a is currently in a state s. Con-
sider a certain attempt t by the evaluation function to
find a successor state for a which results in a situation

of “no progress”. The evaluation function stochas-
tically selects a state s′ from N(s) for a to transit
into. Now consider the next attempt t′ by the evalu-
ation function to find a successor state for a where, as
we know, the agent is currently in a new state s′ fol-
lowing state s. Observe that the neighborhood for state
s′ in this attempt t′ is different from the neighborhood
for state s in the previous attempt t i.e., N(s′) ≠ N(s)
and s is now one of the neighboring states of s′ i.e.,
s ∈N(s′). Suppose again that attempt t′ by the evalua-
tion function to select a successor state for s′ results in
a situation of “no progress”. The evaluation function
again stochastically selects a state from N(s′). Note
that the probability of selecting the state s i.e., the pre-
vious state from N(s′) as the successor to s′ is only 1

4
as against the probability 3

4 of selecting any of the re-
maining three new states from N(s′).

Observe that the number of attempts required by
the evaluation function until any one of the three
states in N(s′) apart from state s is selected follows
a geometric random distribution with probability p =
3
4 . Thus, the expected number of attempts required by
the evaluation function until any one of these three
states is selected is p∑∞i=1 i ⋅(1− p)i−1 = 1

p =
4
3 < 2.

3.3 Our Model

We form teams consisting of certain number of
agents. One of the team’s members is designated as
a leader. We assume the leader has some additional
computational power than other members. The leader
is responsible for maintaining an updated status (i.e.,
visited states) and communicates same to other mem-
bers when requested. The leader answers the follow-
ing queries from members: Has a given state been vis-
ited? and Is there an agent in a given state? These
are the queries that are used by the evaluation func-
tion. Agents are responsible for locating and visiting
interesting cells in the grids. All visited cells, either
interesting or not are marked as investigated. An agent
can move from her current location in only one of four
directions (i.e., north, east, west, and south) and is
limited to moves of length one in a single time step.

When starting all agents (except the leader) are
randomly distributed in the environment. We describe
the procedure used by agents to explore the environ-
ments next. Imagine an agent a currently in a state s
that has not been visited. A state is considered visited
if the reference cell for the state and all its immedi-
ate cells have been marked as investigated. After the
exploration of the current state, agent a invokes the
evaluation function to determine the successor state
to transit into. The successor state guides the deci-
sion of the agent on how it exits from the reference

Efficient Exploration of Environments Using Stochastic Local Search

247



cell and the order it conducts the search of the current
state. Having transits into a successor state, agent a
determines if its current cell is interesting, records a
score, and marks the cell as visited. The agent then
performs an exhaustive search of the immediate cells
to the reference cell of state s. During the exhaustive
search, the agent checks if the cells being searched are
interesting, records scores as appropriate, and subse-
quently marks the cells as visited. On completion of
the search of state s, the status of the state (i.e., vis-
ited) is communicated to the team leader.

Figure 6: Exhaustive search of a state. (a) Agent exits ref-
erence cell x, search current state in the direction of the ar-
rows, and transits into state s4 with reference y. (b) Agent
exits reference cell x, search current state in the direction of
the arrows, and transits into state s1 with reference cell y.

Figure 6(a) provides a simple illustration of an
agent currently in a state with reference cell x which
later transits into a successor state s4 with reference
cell y. The agent first determines its successor state as
s4 using the evaluation function, then conducts an ex-
haustive search of the immediate cells to the reference
cell x in the direction of the arrows for each time steps,
and finally transits into state s4. A similar example is
depicted in Figure 6(b) when the agent transits into
state s1 from the current state. Observe the difference
in how the agents in the two figures exit the reference
cells of their respective current states and the order
in which they conduct their exhaustive search. This
difference is due to the fact that the agents transit into
different successor states from the current state. At the
expiration of the exploration period, we compute the
sum of the scores of interesting cells found by each
agent as the total score achieved by the team.

3.4 Simulation Results

We present results of our simulations. Figure 7 shows
the average percentage of interesting cells found by
six-member teams of agents for 45 × 45 random,
clumped, and linear environments using the SLS
model for all trials of the experiments. The corre-
sponding standard deviations from the average per-
centage of interesting cells found by the agent for the
three environments are also shown in Table 1.

Figure 7: Average percentage of interesting cells found by
six-member teams in 45×45 grid environments.

Table 1: Standard deviations from the respective average
percentage of interesting cells found by six-member teams
in 45×45 grid environments.

Random Clumped Linear
Standard deviation 1.05 1.31 1.09

The average percentage of interesting cells found
by agents’ teams using the SLS model provides a
measure of the level of difficulty of the three envi-
ronments for the teams. This conversely implies a
measure of the relative performance of the teams in
each of the environments. Figure 7 shows that the
relative performance of the teams in the random en-
vironment (∼ 74%) is higher than that of the linear
environment (∼ 72%), which in turn is higher than
that of the clumped environment (∼ 68%). Thus, the
clumped environment appears to be the most difficult
of the three environments, followed by the linear, and
then, the random environment. The level of difficulty
in the three environments may however be assumed to
be relatively close considering how small the spread
(74− 68 = 6) among the average performance of the
teams in the three environment is. This is further evi-
denced in Table 1 by the tightness of the standard de-
viations around the average percentage of interesting
cells found by agents’ teams in the environments.

An implication of the closeness of the level of
difficulty of the three environments is that the SLS
model’s performance has less reliance on these envi-
ronments. Contrarily, (Soule and Heckendorn, 2009)
have shown that the performance of the evolved teams
by their model depends on both the training and test-
ing environments. They show that training in either
the random or clumped environment is a good train-
ing for the other environment, but neither is as good of
a training environment for the linear environment. In
fact, the performance of the evolved teams when they
are trained in either of random or clumped, and later
deployed in linear environment is poor in comparison
with when they are deployed in either of random or
clumped environment. Recall also that agents in our
model are not subjected to training before being de-

ICAART 2017 - 9th International Conference on Agents and Artificial Intelligence

248



ployed to the testing environments. They only con-
duct local searches of their environments using two
important features from SLS algorithms: neighbor-
hood and evaluation function.

For the second set of experiments, we evaluate the
effectiveness of the SLS model by measuring the av-
erage percentage of interesting cells found by agents’
teams, varying the number of agents in the teams,
and the grid sizes in the three environments. Figure
8 shows the average percentage of interesting cells
found by agents’ teams of different sizes in 45× 45
random, clumped, and linear environments. The x-
axis indicates the team member sizes while the y-axis
is the average percentage of interesting cells found by
these teams.

Figure 8: Average percentage of interesting cells found by
agents’ teams of different sizes in 45 × 45 grid environ-
ments.

The six-member teams always discover more than
70% of the interesting cells for both the random
and linear environments, and more than 65% for the
clumped environment on the average. As the size of
the teams increases, there is a significant increase in
the average performance of the teams in the three en-
vironments. The average performance of the teams
consistently increases with the teams sizes and reach-
ing a peak value of 95% for both the random and lin-
ear environments, and 93% for the clumped environ-
ment when the team size is ten. It appears that 10-
member team is the optimal team size when agents
implement the SLS model for the three 45× 45 grid
environments. This can be confirm from Figure 8.

Increasing the number of agents in the teams be-
yond ten does not appear to improve average perfor-
mance of agents. We noticed marginal decrease in the
average performance of larger teams - as teams’ sizes
increase past 10, the average percentage of interest-
ing cells found drops below those of the 10-member
teams. See Figure 8 for performance of agents’ teams
of sizes 11 and 12 where the average percentage of in-
teresting cells found by these teams are fairly smaller
compared to those of the 10-member teams. Our ex-

planation for this unexpected result is that as the num-
ber of agents increases, there is an increase chance of
team members revisiting already visited cells. Such
efforts by agents does not improve the scores (per-
formance) of the teams since the team has already
been rewarded during initial visits of the cells by some
members of the team. In other words, some agents in
a team may become redundant as the size of the team
becomes large.

Figure 9: Average percentage of interesting cells found by
six-member teams for different grid sizes of environments.

Figure 9 shows the average percentage of interest-
ing cells found by six-member teams for different grid
sizes in the three environments. The x-axis indicates
the grid sizes while the y-axis is the average percent-
age of interesting cells found by these teams.

The results show, perhaps not too surprising that
in general, the average performance of the teams de-
grade for the three environments as the dimension of
the grids increases. A partial explanation for this is
that fixing the team size while increasing the dimen-
sion of the environments makes members of the teams
to be sparsely distributed in the environments. Thus,
it will then be more difficult for agents to cooperate
as they now require several time steps to move closer
to one another in order to cover different parts of the
grids. Nonetheless, even at higher dimensions of the
grids, agents’ teams are still able to achieve some
reasonable level of performance. For instance, when
the grid size is 100×100, the 6-member teams found
more than 20% of interesting cells for the random
and clumped environments but below 20% for the lin-
ear environment. Finally, it is important to state that
each of the simulations was completed in less than 5
seconds on a Personal Computer with 2.30GHz Pen-
tium (R) Dual-Core Processor and 4GB RAM running
Windows.

Efficient Exploration of Environments Using Stochastic Local Search

249



4 CONCLUSIONS AND FUTURE
WORK

We provide a preliminary investigation of the use of
Stochastic Local Search (SLS) technique to explore
complex environments where agents’ knowledge and
the time to explore such environments are limited. We
model the problem as that of an instance of a search
problem and develop SLS technique that enables ef-
ficient exploration of such relatively difficult environ-
ments by teams of agents. Thus, we provide initial
extensions to (Soule and Heckendorn, 2009)’s work
that uses evolutionary algorithms in evolving multi-
agent teams in the three environments described in
their work.

Experiments using agents’ teams of different sizes
implementing our model in different problem envi-
ronments show the effectiveness of our technique. In
most cases of the problem instances, teams of agents
were able to complete exploration of more than
70% of the environments. While in the best cases,
they were able to complete explorations of more
than 80% of the environments within short period
of time. These results compare with those of Soule
and Heckendorn’s with performances within similar
ranges. However, it is not yet clear how fair that com-
parison can be justified since their work employs evo-
lutionary algorithm which come with extensive time
requirements of evolutionary learning and huge time
and costs of training for agents before they are de-
ployed to actual testing environments.

Our model avoids such expensive cost of exten-
sive time requirements of evolutionary learning by
agents, the huge time and costs of training agents
in particular environments before deployment to ac-
tual testing environments. This is made possible as
agents in our model are not subjected to training be-
fore being deployed to the testing environments. They
only conduct local searches of the environments from
their current locations using two important features
from SLS algorithms: neighborhood and evaluation
function. Further experiments suggest that the level
of difficulty of the three environments are relatively
the same when agents’ teams implement the SLS
model. This is evidenced by the closeness of the en-
gendered teams’ average performances in the environ-
ments. Thus, unlike Soule and Heckendorn’s evolu-
tionary model, the SLS model’s performance has less
reliance on the three environments in this work.

There are several areas of ongoing research on
this problem. Here are some directions for future
work. Future work will consider extension of the SLS
model such that average performances of teams are
improved across the three environments. We plan to

consider how to extend the SLS technique to evolve
agents’ teams of even larger sizes for environments
beyond the 45×45 grid sizes that were the major focus
in this work. A drawback of Soule and Heckendorn’s
model is the unlimited vision of the environments by
all agents in their work. We avoid this problem by
ensuring that all agents in our model have only lim-
ited vision of the environments except the team leader
that still has unlimited vision of the environments. We
plan to address this issue in future work.

ACKNOWLEDGEMENTS

This research is partially supported by the Virginia
Military Institute’s Professional Travel Funds.

REFERENCES

Batalin, M. A. and Sukhatme, G. S. (2003). Efficient explo-
ration without localization. In International Confer-
ence on Robotics and Automation, pages 2714–2719,
Taipei, Taiwan.

Chalkiadakis, G., Elkind, E., and Wooldridge, M. (2011).
Computational Aspects of Cooperative Game Theory.
Morgan & Claypool Publishers.

Griffiths, N. and Luck, M. (2003). Coalition formation
through motivation and trust. In International Confer-
ence on Autonomous Agents and Multiagent Systems,
Melbourne, Australia.

Hollinger, G., Singh, S., and Kehagias, A. (2009). Effi-
cient, guaranteed search with multi-agent teams. In
Robotics: Science and Systems.

Hoos, H. H. and Stutzle, T. (2000). Local search algorithms
for SAT: an empirical evaluation. Journal of Auto-
mated Reasoning, 24:421–481.

Hoos, H. H. and Stutzle, T. (2005). Stochastic Local Search:
Foundations and Applications. Morgan Kaufmann.

Macedo, L. and Cardoso, A. (2004). Exploration of un-
known environments with motivational agents. In 3rd
International Conference on Autonomous Agents and
Multi Agent System, NYC, USA.

Neller, T. W. (2005). Teaching stochastic local search. In
American Association for Artificial Intelligence.

Okimoto, T., Ribeiro, T., Bouchabou, D., and Inoue, K.
(2016). Mission oriented robust multi-team forma-
tion and its application to robot rescue simulation. In
25th International Joint Conference on Artificial In-
telligence, New York City, USA.

Ray, D. N., Majumder, S., and Mukhopadhyay, S. (2011).
A behavior-based approach for multi-agent q-learning
for autonomous exploration. International Journal
of Innovative Technology and Creative Engineering,
1(7):1–15.

ICAART 2017 - 9th International Conference on Agents and Artificial Intelligence

250



Rochlin, I., Aumann, Y., Sarne, D., and Golosman, L.
(2014). Efficiency fairness in team search with self-
interested agents. In 13th International Conference
on Autonomous Agents and Multiagent Systems, Paris,
France.

Russell, S. and Norvig, P. (2010). Artificial Intelligence: A
Mordern Approach Third Edition. Prentice Hall.

Soule, T. and Heckendorn, R. B. (2009). Environmental ro-
bustness in multiagent teams. In Genetic and Evolu-
tionary Computation Conference, Montreal, Quebec,
Canada.

Thomason, R., Heckendorn, R. B., and Soule, T. (2008).
Training time and team composition robustness in
evolved multi-agent systems. M. O’Neill et al
(Eds): EuroGP 2008, 4971:1–12.

Efficient Exploration of Environments Using Stochastic Local Search

251


