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Abstract. The splitting of weights into smaller sizes by agents in a
weighted voting game and the distribution of the new weights among
several false identities with the intent of payoff or power increase in a
new game consisting of the original agents as well as the false identities is
called false name manipulation. In this paper, we study false name ma-
nipulations in weighted voting games focusing on the power indices used
in evaluating agents’ payoff in such games. We evaluate the susceptibility
to false name manipulations in weighted voting games of the following
power indices, namely, Shapley-Shubik, Banzhaf and Deegan-Packel in-
dices when an agent splits into several false identities. Our experimental
results suggest that the three power indices are susceptible to false name
manipulations when an agent splits into several false identities. However,
the Deegan-Packel power index is more susceptible than Shapley-Shubik
and Banzhaf indices.
General Terms: Algorithms, Economics, Theory
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1 Introduction

Cooperation among self-interested autonomous agents in multiagent environ-
ments is fundamental for agents to successfully achieve goals for which they lack
enough resources and skills. The level of skills and amount of resources of agents
varies, hence the need for agents’ cooperation to complete tasks that are other-
wise difficult for individual agents to achieve or for which better results (than
working independently) can be attained. One way of modelling such cooperation
is via weighted voting games.

Weighted voting games (WVGs) are mathematical abstractions of voting
systems. In a voting system, voters express their opinions through their votes
by electing candidates to represent them or influence the passage of bills. Each
member voters, V , has an associated weight w : V → Q+. A voter’s weight is
the number of votes controlled by the voter, and this is the maximum number of
votes she is permitted to cast. The homogeneous voting system is a special case
in which all voters have unit weight [7]. In our context, a subset of agents, called
the coalition, wins in a WVG, if the sum of the weights of the individual agents
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in the coalition meets or exceeds a certain threshold called the quota. In the
case of the more traditional homogeneous voting system, the winning coalition
(WC) is determined by the majority of the agents. On the other hand, in the
usual WVGs with all agents having different weights, a coalition with sum of the
individual agents’ weights meeting or exceeding the quota determines the WC.

It is natural to naively think that the numerical weight of an agent directly
determines the corresponding strength of the agent in a WVG. The measure of
the strength of an agent is its power. This is the ability of an agent to influence
the decision-making process. Consider, for example, a WVG of three voters,
a1, a2, and a3 with respective weights 6, 3, and 1. Suppose the quota for the
game is 10, then it is clear that a coalition consisting of all the three voters
is needed to win the game. Thus, each of the voters a1, a2, and a3 are of equal
importance in achieving the WC. Hence, they each have equal power irrespective
of their weight distribution in that every voter is necessary for a win.

A strategic agent may alter a game in anticipation of power increase by
splitting its weight among several false agents that are not in the original game.
Bachrach and Elkind [3] refer to this action as false-name manipulation. The
new game consists of all the previous agents and the several false identities into
which the manipulating agent splits. The power of the agent is thus the sum
of the powers of all its false identities. This agent anticipates that the value of
its accumulative power to be at least the value in the original game. Bachrach
and Elkind [3] and Aziz and Paterson [1] show that this anticipation of power
increase due to splitting into exactly two false identities is not achieved at all
times. There are cases when the cumulative power of the false identities remains
the same or even decreases compared with the original power of the agent.

Common measures of agents’ power are the Shapley-Shubik, Banzhaf, and
Deegan-Packel power indices [8]. Bachrach and Elkind [3] and Aziz and Paterson
[1] evaluate the effects of false name manipulation when an agent splits into ex-
actly two false identities using Shapley-Shubik and Banzhaf indices respectively.

To date, there has been practically no work on the effect of false name ma-
nipulations when an agent splits into more than two identities and thus, remains
unexplored [1]. In this paper, we evaluate the susceptibility to false name ma-
nipulations in WVGs of the following power indices, namely, Shapley-Shubik,
Banzhaf, and Deegan-Packel indices for the case when an agent splits into sev-
eral false identities. The more resistant to manipulation a power index is the
better. Hence, agents’ motivation towards manipulation is thus reduced. This
provides some assurance of identity, which is crucial for establishing and main-
taining trustworthy interactions. The remainder of the paper is organized as
follows. Section 2 discusses related work. Section 3 provides the definitions and
notations used in the paper. In Sect. 4, we provide examples to illustrate false
name manipulation when an agent splits into exactly two false identities using
the Deegan-Packel index. In Sect. 5, we provide experimental evaluation of sus-
ceptibility of the three power indices to false name manipulations. We conclude
in Sect. 6 and provide directions for future work.
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2 Related Work

WVGs and power indices are widely studied [1],[3],[4],[8]. WVGs have many
applications, including economics, political science, neuroscience, threshold logic,
reliability theory, distributed systems [2], and multiagent systems [3]. Aziz et
al. provide a brief discussion of some applications of WVGs. Prominent instances
of weighted voting problems are in the United Nations Security Council, the
Electoral College of the United States and the International Monetary Fund [2].

The study of WVGs has also necessitated the need to fairly determine the
strength or power of players in a game. This is because the power of a player
in a game provides information about the relative importance or criticality of
that player in the game compared to other players. To evaluate the power of
the players, power indices such as Shapley-Shubik, Banzhaf, and Deegan-Packel
indices are commonly employed [8]. These power indices satisfy the axioms that
characterize a power index [3], have gained wide usage in political arena, and
are the main power indices found in the literature [6]. Computing the power
indices of players using any of Shapley-Shubik, Banzhaf index, or Deegan-Packel
index is NP-hard [8], and the problem is also #P-complete for Shapley-Shubik
and Banzhaf. However, these values can be computed in pseudo-polynomial time
by dynamic programming [5], [8]. There are also approximation algorithms for
computing the power indices using Shapley-Shubik and Banzhaf indices [4].

These power indices have been defined on the framework of subsets of WCs
in the game they seek to evaluate. A wide variation in the results they provide
can be observed. This is due partly to the different definitions and methods of
computation of the associated subsets of the WCs. Then, comes the question of
which of the power indices is the most resistant to manipulation in a WVG. The
choice of a power index depends on a number of factors, namely, the a priori
properties of the index, the axioms characterizing the power indices, and the
context of decision making process under consideration [6].

False name manipulation has been studied in the context of non-cooperative
games [3] and in open anonymous environments, such as the internet [9]. False
name manipulation is hard to discover and can be effective in such environments.
The menace can take different forms, such as agents providing multiple identities,
two or more agents merging identities to form a single agent, non disclosure of
full status (in the form of hiding skills) by agents or even a combination of these
forms [9]. The maiden study of this behavior in the context of WVG is the
work of Bachrach and Elkind [3]. This action involves an agent splitting into a
number of false agents with the intent that the cumulative power index value of
the false agents exceeds the original value. They use the Shapley-Shubik index
to evaluate agent power and consider the case when agents splits into exactly
two false agents. The extent to which agents increase or decrease their Shapley
power are also bounded. Similar results using the Banzhaf power index were
obtained by Aziz and Paterson [1].
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3 Definitions and Notations

We give the following definitions and notations used throughout the paper.
Weighted Voting Game: Let I = {1, · · · , n} be a set of agents. Let w =

{w1, · · · , wn} be the corresponding positive integer weights of the agents in order.
Let S be a non empty set of agents. S ⊆ I is a coalition. A WVG G with quota q
involving agents I is defined as G = [w1, · · · , wn; q]. Denote by w(S), the weight
of a coalition S derived from the summation of the individual weights of agents in
S i.e. w(S) =

∑
i∈S wi. A coalition, S, wins in the game G if w(S) ≥ q otherwise

it loses. So that simultaneously there can be a single WC, q is constrained as
follows 1

2w(I) < q ≤ w(I).

Simple Voting Game: Each of the 2|I| coalitions S ⊆ I has an associated
function v : S → {0, 1}. The value 1 implies a win for the coalition and 0 a loss.
In the game G, v(S) = 1 if w(S) ≥ q and 0 otherwise.

Dummy and Critical Agents: An agent i ∈ S is dummy if its weight in
S is not needed for S to be a WC, i.e. w(S−{i}) ≥ q. Otherwise it is critical to
coalition S, i.e. w(S) ≥ q and w(S − {i}) < q.

Unanimity Weighted Voting Game: A WVG in which there is a single
WC and every agent is critical to the coalition is a unanimity weighted voting
game.

Shapley-Shubik Power Index: The Shapley-Shubik power index is one of
the oldest power indices and has been used widely to analyze political power.
The index quantifies the marginal contribution of an agent to the grand coali-
tion. Each agent in a permutation is given credit for the win if the agents pre-
ceding it do not form a WC but by adding the agent in question, a WC is
formed. The power index is dependent on the number of permutations for which
an agent is critical. For the n! permutations of agents used in determining the
Shapley-Shubik index, there exists exactly one critical agent in each of the per-
mutations. Adopting Bachrach and Elkind’s notation [3], we denote by Π the
set of all permutations of n agents in a WVG G. Let π ∈ Π define a one-to-one
mapping where π(i) is the position of the ith agent in the permutation order.
Denote by Sπ(i), the predecessors of agent i in π, i.e., Sπ(i) = {j : π(j) < π(i)}.
The Shapley-Shubik value of the ith agent in G is given by

ϕi(G) =
1

n!

∑
π∈Π

[v(Sπ(i) ∪ {i})− v(Sπ(i))] (1)

Banzhaf Power Index: Another index that has also gained wide usage in
the political arena is the Banzhaf power index. Unlike the Shapley-Shubik index,
its computation depends on the number of WCs in which an agent is critical.
There can be more than one critical agent in a particular WC. The Banzhaf
index, βi(G), of agent i in the same game, G, as above is given by

βi(G) =
ηi(G)∑
i∈I ηi(G)

(2)

where ηi(G) is the number of coalitions in which i is critical in G.
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Deegan-Packel Power Index: The Deegan-Packel power index is also
found in the literature for computing power indices. The computation of this
power index for an agent i takes into account both the number of all the mini-
mal winning coalitions (MWCs) in the game as well as the sizes of the MWCs
having i as a member [8]. Thus, it is more impressive to be one in three (who
elicited the win) rather than one in ten. A WC C ⊆ I is a MWC if every proper
subset of C is a losing coalition, i.e. w(C) ≥ q and ∀T ⊂ C,w(T ) < q. The
Deegan-Packel power index, γi(G), of an agent i in G is given by

γi(G) =
1

|MWC|
∑

S∈MWCi

1

|S|
(3)

where MWCi are the sets of all MWCs in G that include i.
Susceptibility of Power Index to Manipulation: Let Φ be a power

index. Denote by Φi(G), the power of an agent i in a WVG G. Suppose i alters
G by splitting into k false identities having weights wi1, · · · , wik. Let G′ be the
resulting game such that

∑k
j=1 wij = wi and the weights of all other agents in

G′ remain constant. We say that Φ is susceptible to manipulation if there exists∑k
j=1 Φij(G

′) > Φi(G), and the split is advantageous. If
∑k
j=1 Φij(G

′) < Φi(G),

then the split is disadvantageous while it is neutral when
∑k
j=1 Φij(G

′) = Φi(G).

4 False Name Manipulations with Deegan-Packel Index

In this section, we provide examples to illustrate false name manipulation in
WVGs using the Deegan-Packel power index to compute power. We consider
the case where an agent splits into exactly two false identities in the new game.
Splitting into more than two false identities is considered in the next section.

Example 1. Splitting Advantageous

Let G = [5, 4, 3; 7] be a WVG of three agents 1, 2, and 3 having respective weights
5, 4, and 3 with quota q = 7. The game has three MWCs {{1, 2}, {1, 3}, {2, 3}}.
Consider agent 1. The Deegan-Packel index of this agent computed using (3)
above is γ1(G) = 1

3 . Suppose the agent splits into two new false agents 1a and
1b with respective weights 3 and 2. We have a new game G′ = [3, 2, 4, 3; 7].
The MWCs for this game consist of {{1a, 2}, {1a, 1b, 3}, {2, 3}}. The respective
Deegan-Packel indices for agents 1a and 1b are γ1a(G′) = 5

18 and γ1b(G′) = 1
9 .

Clearly, the sum of the values of the two indices, namely γ1a(G′) + γ1b(G′) =
7
18 > γ1(G). Thus, the agent benefits from the split action by an increase in
payoff.

Example 2. Splitting Disadvantageous

Let G = [20, 10, 8, 8, 3, 2, 1, 1; 28] be a WVG. The Deegan-Packel index of agent
1 is γ1(G) = 0.2500. Suppose this agent splits into 1a and 1b with weights 14
and 6 respectively in a new game G′ = [14, 6, 10, 8, 8, 3, 2, 1, 1; 28]. The Deegan-
Packel indices of agents 1a and 1b are 0.1339 and 0.1113 respectively. Hence,
γ1a(G′) + γ1b(G′) = 0.2452 < γ1(G).
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Example 3. Splitting Neutral

Let G = [5, 4, 3; 7] be the same WVG as example 1. Suppose the agent splits
into 1a and 1b with respective weights 4 and 1 in a new game G′ = [4, 1, 4, 3; 7].
The Deegan-Packel indices of agents 1a and 1b are 1

3 and 0 respectively. Hence,
γ1a(G′) + γ1b(G′) = γ1(G), and the agent neither benefited nor incured a de-
crease in payoff.

5 Susceptibility of Power Indices to Manipulations

In this section, we demonstrate the susceptibility to false name manipulations
in WVGs of the following power indices, namely, Shapley-Shubik, Banzhaf and
Deegan-Packel power indices. We consider the more general case of agents split-
ting into more than two identities. For the sake of simplicity in our discussion,
we provide the following assumptions that by no means invalidate the basic
requirements of WVGs:

1. Only one of the agents is engaging in the manipulation at a time. We note
that other agents also have similar motivation to split their weights in antic-
ipation of power increase. In our future work, we intend to consider scenarios
where multiple agents in WVGs simultaneously engage in false name manip-
ulation.

2. All splits of agents’ weights are into integer values. Otherwise we will have
an exponential number of possible new weights to evaluate.

3. The weights of the false identities that an agent splits into are strictly greater
than zero. By the null player axiom [6], assigning a weight of zero to an agent
does not make the agent critical in all WCs.

5.1 Unanimity Weighted Voting Games

We recall that a WVG in which there is a single WC and such that every agent
is critical to the coalition is a unanimity WVG game. Since all the agents in the
WC of unanimity WVGs are critical, the total weights of all agents, w(I) and
the quota, q in such games satisfy the inequality, w(I) ≥ q.
Proposition 1. In a unanimity WVG with q = w(I), if Banzhaf indices are
used as payoffs of agents in a WVG, then it is beneficial for an agent to split up
into several agents. The same holds for Shapley-Shubik power index [1].

Proposition 2. In a unanimity WVG with q = w(I), if the Deegan-Packel
index is used to compute power of agents, then it is advantageous for an agent
to split up into several false agents.

Proof. Let G be a unanimity WVG of n agents with quota q = w(I). It is easy
to see that the Deegan-Packel power index of every agent i in G, γi(G) = 1

n .
Suppose agent 1 splits into m + 1 false agents, then we have a new unanimity
game, G′ of n + m agents. The Deegan-Packel power index of every agent i
in G′,γi(G

′) = 1
n+m . Hence, the new Deegan-Packel power index of agent 1 is

γ1(G′) = m+1
n+m > 1

n for n > 1. ut
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The following theorem is immediate from propositions 1 and 2.

Theorem 1. Let G be a unanimity WVG of n players with quota q = w(I).
Suppose an agent i splits into k ≥ 3 false agents. The Shapley-Shubik, Banzhaf,
and Deegan-Packel power index of agent i increases as its split size, k, increases.

Corollary 1. Let G be a unanimity WVG with w(I) > q. Let an agent i
split into several false agents in a new game G′. Suppose the new game G′

is also a unanimity WVG, then the splitting is advantageous for i if any of
Shapley-Shubik, Banzhaf, and Deegan-Packel power index is use to compute the
agent’s power.

5.2 General Weighted Voting Games

False name manipulation in the general case of the WVGs is more interesting as
it provides more complex and realistic scenarios that are not well-understood. Of
importance is that the number of WCs and MWCs changes in contrast to being
static as observed with unanimity WVGs with q = w(I). Thus, as the structure
of the WVGs changes, so does the composition of the WCs and MWCs.

As mentioned in the introduction, the more detailed analysis on the effect of
false name manipulations when an agent splits into more than two false agents
remain unexplored [1]. The only closely related research are the NP-hardness
results of finding a beneficial split in WVGs when a manipulating agent splits
into at least two false agents. The hardness results are for the Shapley-Shubik
[3] and Banzhaf [1] power indices. To the best of our knowledge, ours is the first
paper to confirm the existence of beneficial splits when agents split into more
than two false identities for the three power indices we consider.

We perform experiments to simulate the effect of manipulations by agents
using the three power indices. The weights of our agents are chosen so that no
weight is larger than ten. These weights are reflective of realistic voting proce-
dures as the weights of agents in real voting are not too large [3] and as such
are representative of WVGs. In the experiments, we randomly generate WVGs
and assume only the first agent in the game is engaging in the manipulation,
then determine the three power index values of this agent in the game. After
this, we consider splits into at least two false identities by this agent while the
weights of all other agents remain the same in the new games. Suppose the ini-
tial weight of the manipulating agent in the original game is n, we allow the
agent, to split its weight among the false agents in the new games as follows,
{{n−1, 1}, {n−2, 1, 1}, · · · , {1, 1, · · · , 1}}. The values of the power indices of the
several false agents into which the manipulating agent splits are then added and
compared with the power index of the agent in the original game. We generate
20,000 original WVGs for the experiments and allowed the manipulating agent
to split its weight in each of the games. The numbers of the new games gener-
ated by the action of the manipulating agent depends on the initial weight of
the agent in the original games.

Our experiments suggest the existence of beneficial splits when agents engage
in such manipulations for the three power indices. However, the extent to which
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agents gain varies with the indices. The effect of this action is well noticed
with the Deegan-Packel index as we found cases where agents improve their
power index by more than four times the original value. On the other hand, the
maximum gain attained while using any of Shapley-Shubik and Banzhaf index
is less than a factor of two. The result suggests that Deegan-Packel power index
is more susceptible to false name manipulations than the Shapley-Shubik and
the Banzhaf indices. Hence, this may provides some motivation for agents to
engage in manipulation in WVGs when the game is being evaluated with the
Deegan-Packel index. We illustrate three games from the experiments in which
an agent attains high factor splitting into more than two false agents for the
three power indices.

Example 4. Consider the WVG G = [6, 2, 2, 3, 10; 12]. The gains of the manipu-
lating agent (with weight 6) is depicted in Table 1 for the Shapley-Shubik power
index.

Table 1. The splitting agent weight, Shapley-Shubik indices, and the factor of incre-
ment in the game G = [6, 2, 2, 3, 10; 12].

Splitting Agent Weights Shapley-Shubik Index Factor Increment

{6} 0.1000 -
{5, 1} 0.1000 -
{4, 1, 1} 0.1238 1.2
{3, 1, 1, 1} 0.1429 1.4
{2, 1, 1, 1, 1} 0.1548 1.5
{1, 1, 1, 1, 1, 1} 0.1667 1.7

Example 5. Consider the WVG G = [7, 8, 4, 8, 4; 16]. The gains of the manipu-
lating agent (with weight 7) is depicted in Table 2 for the Banzhaf power index.

Table 2. The splitting agent weight, Banzhaf indices, and the factor of increment in
the game G = [7, 8, 4, 8, 4; 16].

Splitting Agent Weights Banzhaf Index Factor Increment

{7} 0.1429 -
{6, 1} 0.1429 -
{5, 1, 1} 0.1429 -
{4, 1, 1, 1} 0.1429 -
{3, 1, 1, 1, 1} 0.1864 1.3
{2, 1, 1, 1, 1, 1} 0.2381 1.7
{1, 1, 1, 1, 1, 1, 1} 0.2672 1.9
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Example 6. Consider the WVG G = [8, 4, 9, 1, 4; 14]. The gains of the manipu-
lating agent (with weight 8) is depicted in Table 3 for the Deegan-Packel power
index.

Table 3. The splitting agent weight, Deegan-Packel indices, the factor of increment,
and the number of MWCs in the game G = [8, 4, 9, 1, 4; 14].

Splitting Agent Weights Deegan-Packel Index Factor Increment # of MWC

{8} 0.1667 - 5
{7, 1} 0.2143 1.3 7
{6, 1, 1} 0.2407 1.4 9
{5, 1, 1, 1} 0.3036 1.8 14
{4, 1, 1, 1, 1} 0.4207 2.5 29
{3, 1, 1, 1, 1, 1} 0.5344 3.2 57
{2, 1, 1, 1, 1, 1, 1} 0.6201 3.7 115
{1, 1, 1, 1, 1, 1, 1, 1} 0.6754 4.1 229

For this example, the number of MWCs in the original game is 5. They are
{3, 4, 5}, {2, 3, 5}, {2, 3, 4}, {1, 3}, and {1, 2, 5}. Although the weight of agent 1,
8 is relatively high compared to some other agents in the game, it belongs to
only two of the MWCs having two and three members. Of particular interest
are agents 2 and 5 with weight 4 each, these agents belong to three MWCs with
each of the coalitions having three members, hence, by (3), their power from the
original game is greater than that of agent 1 with higher weight. Agent 1 thus
has motivation to split its weight. So, as the agent splits its weight, it becomes
active in more MWCs which improves its power index.

5.3 Simulation Results

We present the results of our extensive set of simulations. For our study, we
generate 20, 000 original WVGs and allow manipulation of all the games by the
manipulating agent. When starting a new game, all agents are randomly assigned
weights in the current game and the quota of the game is also generated based
on the weights assumed by the agents. We designate the first agent to be the
manipulating agent. We have five agents in each of the original games. The
maximum weight that can be asssumed by the manipulating agent is eight while
all other agents can be up to ten. The least possible weights for any agent is one.
Obviously, when the manipulating agent assumes a weight of one in a game,
then it is not possible for it to split in such game. We keep the weight of the
manipulating agent to be lower than other agents to limit the number of cases.
Since all weigths are randomly generated, we have a handfull of different types
of games that are representative of the WVGs. For example, we have many cases
where the original weight of the manipulating agent is lower, higher or even the
same as the weights of many or all agents in the original games.
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We first consider how susceptibility to manipulation among the power indices
compares when an agent is allowed to manipulate a game. This is achieved
by comparing the population of the factor of increment attained by agents in
different games for each indices with the split sizes (the number of false agents
the original agent splits). We show a summary of the ease of manipulation by
agents for the three indices in 20, 000 WVGs in Fig. 1. The x-axis indicates the
split size while the y-axis is the average factor of increment achieved by agents in
the 20, 000 WVGs for different split sizes. The high susceptibility of the Deegan-
Packel index to manipulation can be observed from the figure. While the average
factor of increment for manipulation rapidly grows with split size for this index,
the growth for the Shapley-Shubik and Banzhaf does not appear to correlate
with split sizes, and on average does not improve utility. From our experiments,
many of the games are advantageous with the Deegan-Packel index while many
are disadvantageous for both Shapley-Shubik and Banzhaf indices. This result
is indicative of the ease by which each of the power indices is manipulable.
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Fig. 1. Ease of Manipulation among the three Power Indices

The number of games that are advantageous, neutral, and disadvantageous
for the three indices are also analyzed. Figure 2 shows that a larger number of the
games are advantageous for Deegan-Packel index than for Shapley-Shubik and
Banzhaf indices. Consider when 1, 000 games are generated, in more than 800 of
the games are splitting advantageous for Deegan-Packel while we have less than
300 advantageous games for Shapley-Shubik and Banzhaf indices. Similarly, Fig.
3 shows the number of neutral games. We have more neutral games for Shapley-
Shubik and Banzhaf than Deegan-Packel. Virtually none of the games are neutral
for Deegan-Packel while about 90 of the games are neutral for Shapley-Shubik
and Banzhaf indices out of a collection of 1, 000 games. Finally, Fig. 4 shows that
there are fewer disadvantageous games for Deegan-Packel compare with Shapley-
Shubik and Banzhaf indices. Clearly, the Deegan-Packel index is more susceptible
to false name manipulations than Shapley-Shubik and Banzhaf indices.
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6 Conclusions

In this paper, we evaluate the susceptibility to false name manipulations of the
following power indices, namely, Shapley-Shubik, Banzhaf, and Deegan-Packel
indices when an agent splits into several false identities in weighted voting games.
We illustrate the susceptibility of the three indices through simulations of a
large number of weighted voting games with a manipulating agent in each of the
games. Our experimental results suggest that the three indices are susceptible
to false name manipulations when an agent splits into several false identities.
However, the Deegan-Packel index is more susceptible than Shapley-Shubik and
Banzhaf indices, with Shapley-Shubik being the least susceptible. Hence, using
Shapley-Shubik index to evaluate weighted voting games reduces agents’ motiva-
tion towards false name manipulations. This provides some assurance of identity,
which is crucial for establishing and maintaining trustworthy interactions.

Since our experimental results have suggested ideas on the extent to which
each of the three indices are susceptible to false name manipulations, an obvious
direction for future work is to provide theoretical bounds on the extent to which
each of the indices are susceptible to false name manipulations when an agent
splits into several false identities. It will also be interesting to come up with
desirable properties that power indices should satisfy in order to prevent false
name manipulations or prove that such properties are not achievable.
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